Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893234

RESUMO

To date, insufficient investigation has been carried out on the biocompatibility of synthetic bioactive bone substitute materials after traumatically induced bone fractures in clinical conditions. This study encompasses the safety, resorption, healing process, and complications of surgical treatment. Our current hypothesis posits that calcium phosphate-based bone substitutes could improve bone healing. In this retrospective case-control study, over 290 patients who underwent surgical treatment for acute fractures were examined. Bone defects were augmented with calcium phosphate-based bone substitute material (CP) in comparison to with empty defect treatment (ED) between 2011 and 2018. A novel scoring system for fracture healing was introduced to assess bone healing in up to six radiological follow-up examinations. Furthermore, demographic data, concomitant diseases, and complications were subjected to analysis. Data analysis disclosed significantly fewer postoperative complications in the CP group relative to the ED group (p < 0.001). The CP group revealed decreased risks of experiencing complications (p < 0.001), arthrosis (p = 0.01), and neurological diseases (p < 0.001). The fracture edge, the fracture gap, and the articular surface were definably enhanced. Osteosynthesis and general bone density demonstrated similarity (p > 0.05). Subgroup analysis focusing on patients aged 64 years and older revealed a diminished complication incidence within the CP group (p = 0.025). Notably, the application of CP bone substitute materials showed discernible benefits in geriatric patients, evident by decreased rates of pseudarthrosis (p = 0.059). Intermediate follow-up evaluations disclosed marked enhancements in fracture gap, edge, and articular surface conditions through the utilization of CP-based substitutes (p < 0.05). In conclusion, calcium phosphate-based bone substitute materials assert their clinical integrity by demonstrating safety in clinical applications. They substantiate an accelerated early osseous healing trajectory while concurrently decreasing the severity of complications within the bone substitute cohort. In vivo advantages were demonstrated for CP bone graft substitutes.

2.
Materials (Basel) ; 14(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832488

RESUMO

The use of autologous bone graft for oral rehabilitation of bone atrophy is considered the gold standard. However, the available grafts do not allow a fast loading of dental implants, as they require a long healing time before full functionality. Innovative bioactive materials provide an easy-to-use solution to this problem. The current study shows the feasibility of calcium phosphate cement paste (Paste-CPC) in the sinus. Long implants were placed simultaneously with the cement paste, and provisional prosthetics were also mounted in the same sessions. Final prosthetics and the full loading took place within the same week. Furthermore, the study shows for the first time the possibility to monitor not only healing progression using Cone Beam Computer tomography (CBCT) but also material retention, over two years, on a case study example. The segmented images showed a 30% reduction of the cement size and an increased mineralized tissue in the sinus. Mechanical testing was performed qualitatively using reverse torque after insertion and cement solidification to indicate clinical feasibility. Both functional and esthetic satisfaction remain unchanged after one year. This flowable paste encourages the augmentation procedure with less invasive measure through socket of removed implants. However, this limitation can be addressed in future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...